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Gap solitons in quadratically nonlinear gratings: Beyond the cascading limit
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We consider pulse propagation in quadratically nonlinear gratings. Assuming that the phase mismatch
between the fundamental and the second-harmonic frequenciesdk is large, we present a perturbation method
in dk21. In the well known cascading limit, terms todk21 are kept; here we keep terms todk22, which leads
to another type of coupled mode equations. Numerical calculation of the full equations support our theoretical
results.

PACS number~s!: 42.79.Dj, 42.65.Tg, 42.81.Dp
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It is well known that the group velocity of light propaga
tion in a periodic structure can be much smaller than tha
the uniform medium@1#. However, the dispersion introduce
by the periodicity causes such pulses to broaden rapi
This broadening can be counteracted if the structure is
nonlinear@2,3#, as was demonstrated experimentally in fib
@4# and semiconductor geometries@5#, all of which used a
Kerr nonlinearity. Since the Kerr effect is a third order effe
and is thus quite weak, large optical powers were requir
for example, in the fiber experiments the peak intensity w
around 10 GW/cm2, and was somewhat lower in the sem
conductor geometry.

It is also well known that, in an appropriate limit, a qu
dratic nonlinearity leads to a nonlinear phase shift tha
somewhat similar to that from the Kerr effect@6#. However,
the quadratic effect has the advantage over a cubic effect
it can be much stronger. The starting point for studies
quadratically nonlinear periodic media is a set of fo
coupled mode equations. This work has shown that th
media support pulselike solutions that can propagate at a
trary velocities up to the speed of light in the medium@7–9#.
In spite of this progress, general analytic solutions are
known, except for some limiting cases. In the first of the
the pulses are required to be wide so that a set of cou
nonlinear Schro¨dinger equations apply@7,9#. The second
limit is the integrable case for stationary solitons in whi
the phase mismatch between the fundamental and the se
harmonic is required to have a particular value@10#. The
third limit is that of a large refractive index mismatch b
tween the fundamental and the second harmonic frequen
in this ‘‘cascading limit,’’ the quadratically nonlinear me
dium acts approximately as if it had a cubic nonlinearity, a
the four coupled mode equations reduce to two@8,11,12#.

The cascading limit is obtained whendk[k222k1→`,
where k1,2 are the wave numbers at the fundamental a
second-harmonic frequencies, respectively. It can thus
considered to be the first term in a (dk)21 expansion. An
expansion in (dk)21 for soliton solutions in uniform media
was considered by Buryak@13#. Higher order effects for soli-
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tons in the presence of a grating were studied by Contiet al.
@14#. Retaining up toO(dk22), they obtained solutions tha
are either stationary or have a specified velocity. Howev
they do not obtain simple analytical expressions.

It thus seems that there is no complete generalization
coupled mode theory beyond the cascading limit, even u
(dk)22, and general analytic results have also not be
found. Here we generalize the cascading limit, derivingpar-
tial differential equations for the forward and backwa
waves. We also give an analytical form for the soliton so
tions with arbitrary velocity and detuning.

We start from the coupled mode equations that desc
periodic systems with ax (2) nonlinearity@7–9#:

i S ]

]t
6

]

]zD E161k1
6E171G~E16!* E2650, ~1!

i S ]

]t
6s

]

]zD E261k2
6E271dkE261G~E16!250, ~2!

whereE1,26 are the envelopes of the forward (1) and back-
ward (2) propagating modes at the fundamental~1! and
second-harmonic~2! frequencies. Further,G is a real param-
eter that is proportional tox (2), k1,25k1,2

1 5(k1,2
2 )* are the

grating strengths at the two frequencies, anddk was defined
above. The group velocity of the fundamental and seco
harmonic waves are normalized to 1 ands, respectively. By
suitable choosing the origin,k1 can be made a real positiv
number.

In Eqs.~1! and ~2! all quantities are assumed dimensio
less and normalized as

E16;
]

]z
E16;

]

]t
E16;k1;k2;GE26;O~1!. ~3!

Here we are interested in large mismatchesdk@1, so that
Eq. ~2! is formally solved as an expansion of (dk21)

S E21

E22
D 52

G

dk H I 2
X

dk
1

X2

~dk!2
2•••J S ~E11!2

~E12!2D , ~4!

where the operatorX is defined as
4246 ©2000 The American Physical Society
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X5S i S ]

]t
1s

]

]zD k2
1

k2
2 i S ]

]t
2s

]

]zD D . ~5!

The lowest order approximation,G21E2652(E16)2/dk,
corresponds to the cascading limit@11#. Note that according
to Eq.~3! the above relation givesG2;dk, and the nonlinear
constantG should thus be large andE26 should be small of
O(dk21/2).

The second-order approximations forE26 gives

G21E2652
~E16!2

dk
1

k2
6~E17!2

~dk!2
2

2k1E16E17

~dk!2

1
2G2

~dk!3
uE 16u2~E16!26 i

s21

~dk!2

]

]z
~E16!2, ~6!

where we have eliminated time derivatives ofE16 by using
Eq. ~1!. We refer to an analysis based on Eq.~6!, as the
improved cascadingapproximation. Note that in their ana
lytic work Peschelet al. only retain the first and secon
terms of Eqs.~6! @8#. Substituting Eqs.~6! into Eqs.~1!, we
obtain a set of equations for theE16 only

i
]

]t S E16

E16*
D 5S 12

2G2

~dk!2UE 16U2D S 2
d

dE16*

d

dE16

D H, ~7!

where

H5E
2`

1`

~H11H2!dz, ~8!

H65~21!61iE16*
]E16

]z S 11
G2s

~dk!2
uE 16u2D 2

G2

2dk
uE 16u4

1k1E17E16* 1
G2k2

6

2~dk!2
~E17E16* !2, ~9!

up to the order of interest. Other than the factor
22GuE 16u2/(dk)2), Eq. ~7! is of symplectic form in which
H is an energylike integral. We can make it symplectic b
transformation of the dependent variable

E165E62
G2

2~dk!2 uE6u2E6 . ~10!

Applying the Poisson bracket$F,G%P with respect toE6 ,
we find that $E16(x),E16* (y)%PÞ$E6(x),E6* (y)%P . Trans-
formation ~10! is thus not canonical@15#, and changes the
symplectic structure. Using the new variable and neglec
O(dk22) quantities, we now obtain the coupled mode eq
tions
a

g
-

i S ]

]t
6

]

]zDE61k1E71G0uE6u2E6

1
G1

2
~ uE7u212uE6u2!E71

G1

2
~E6!2E7* 1G2

6E7
2 E6*

1G3uE6u4E66 iG4uE6u2
]E6

]z
50, ~11!

where

G0[2
G2

dk
, G1[2

G2

~dk!2
k1 , G2

6[
G2

~dk!2
k2

6 ,

G3[
3G4

~dk!3
, G4[

2G2~s21!

~dk!2
. ~12!

Equations~11! constitute a homogeneous symplectic for
@14# i ]E6 /]t56dH/dE6* . They are similar to the genera
ized coupled mode equations for deep~superstructure! grat-
ings with a Kerr nonlinearity@16,17#, except that our resul
has quintic and nonlinear derivative terms, and does not h
cross phase modulation terms.

We find traveling solutions to Eq.~11! of the form

E65D71/2@11D6~z!#@F~z!#1/2ei [u6(z)2Vt] , ~13!

wherez5z2Vt, D is a positive constant,V is the detuning
parameter, and theD6 are assumed small, ofO(dk21). Note
that the envelopes of the forward and backward waves di
in shape if theD6 are different. Note also that since the tw
complex equations~13! contain five unknown real functions
we may require an additional condition, which we here i
pose onD11D2 .

Substituting Eq.~13! into Eqs.~11! we have

D5A~12V!/~11V!, ~14!

D1~z!2D2~z!52g3VG4F~z!, ~15!

whereg5(12V2)21/2. If we choose,

D1~z!1D2~z!52
g

2
~2g221!G4F~z!, ~16!

we obtain an ODE system forF andf[u12u2

df

dz
5

]I

]F
,

dF

dz
52

]I

]f
, ~17!

with the integralI (F,f)

I ~F,f!52g2VF12gk1F cosf1$g~2g221!G0

2g3~4g223!VG4%F
21$2g2G122g2

3~2g221!k1G4%F
2cosf1guG2uF2cos~2f2b!

1H 2

3
G3~4g423g2!2g2~8g428g211!

3G4G0J F3,

whereb5arg(k2).



ig

ter

m

the

y-
if

e

4248 PRE 62TAKESHI IIZUKA AND C. MARTIJN de STERKE
Here we search for localized waves, thusI (F,f)50, and
we obtain a relation betweenF andf that reads

F@f#5 f @f#$11a11a2cosf1a3cos~2f2b!%, ~18!

where

f @f#[2
2~gV1k1cosf!

~2g221!G0

, ~19!

a1[
4~4g423g2!

3~2g221!2

G3V

G0
2

2
g2~8g426g221!

~2g221!2

G4V

G0
,

~20!

a2[2
2gG1

~2g221!G0

1
4~4g323g!

3~2g221!2

k1G3

G0
2

2
g2~12g4212g211!

~2g221!2

k1G4

G0
, ~21!

a3[2
uG2u

~2g221!G0

. ~22!

Equation~18! gives the phase flows toO(dk21) in F-f
space; typical flows for stationary solutions are shown in F
1, for dk510 andk15k25s51, G53, b50.

Applying the case of a solitary wave withI 50 to the
ODE for f, we have

df

2g2V12gk1cosf
52ldf2dz, ~23!

l[
2~4g223!G3

3~2g221!2G0
2

2
8g428g211

~2g221!2

G4

G0
;OS 1

dkD .

~24!

In the cascading limitl→0, f(z)5f0(z) is given by
@12,17#

f0~z![22 arctanFAk11gV

k12gV
tanh71~j/2!G , ~25!

j[2$Ak1
22g2V2g~z2z0!%, ~26!

FIG. 1. Phase flows inF-f space fork15k25s51, G53,
V50, anddk510. Solitary wave solutions are allowed only in th
gap (uVu,1). F,0 is unphysical as seen in Eq.~13!. Solid dots
indicate fixed points.
.

wherez0 is a constant. Comparing Eq.~23! with the differ-
ential equation forf0 : df0 /(2g2V12gk1cosf0)52dz,
we obtainf(z) in implicit form f(z)5f0(z1lf). Noting
that l is small, we may replacef on the right-hand side by
f0,

f~z!5f0„z1lf0~z!…. ~27!

Functionf0(z) is already given in Eq.~25!, and we have
thus an explicit expression for the phasef(z) up to
O(dk21). We can also obtain the ‘‘soliton amplitude’’F(z)
by substituting Eq.~27! into Eq. ~18!.

Applying transformation~10! and noting Eq.~12!, we di-
rectly obtain the total powerP5uE11u21uE12u2 in an ana-
lytic form:

P~z!52g f ~z!S 11b1

V

dk
1b2

k1cosf~z!

dk

1
uk2ucos„2f~z!2b…

~2g221!dk
D , ~28!

where f (z)5 f @f(z)# and

b15
2~4g422g221!

~2g221!2
1

8g2~g221!

~2g221!2
~s21!, ~29!

b25
4g422g222

~2g221!2g
$112g2~s21!%. ~30!

Thus we can obtain an analytic expression for the cen
value Pc . In Fig. 2 we compare the analytic result forPc
with the numerically obtained value from the original syste
~1! and~2!, for different values ofdk andV. The numerical
results were obtained assuming the envelopes to be of
form E1,265g1,26(z)e2 iVt which reduces Eqs.~1! and~2! to
an ODE system for theg1,26(z).

Clearly for largedk (530), the agreement is good ever
where in the photonic band gap. It is surprising that even

FIG. 2. Normalized soliton center powerPc /G. Solid lines are
the analytic result~28!. Circles indicates numerical values from
Eqs. ~1! and ~2!. Parameters are set ask1 ,k2 ,s51, and V50.
RegionuVu,1 corresponds to the photonic band gap.
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dk54 @in a sense ofO(1)#, Eq. ~28! is effective particularly
for small V. For higher powers, the deviations between
two results are more obvious, though remain modest. E
though Pc /G should be small enough to apply our theor
Fig. 2 shows good agreement even ifPc /G is of order unity.

In Fig. 3 we compare the complete analytical results fr
Eq. ~28! with numerical results from the original system~1!
and~2!, and results in the cascading limit. Equations~28! are
clearly superior to the cascading results, and are almos
distinguishable from the exact results.

FIG. 3. Comparison of soliton profiles obtained from nume
cally solving Eqs.~1! and~2! ~short dashed lines!, in the cascading
limit ~long dashed lines!, and in the improved cascading limit~solid
lines!. The parameters not given in the figure arek1 ,k2 ,s51, and
V50.
n

b-
,

e
n

,

n-

Our procedure can certainly be generalized to inclu
higher orders of (dk)21. Actually using Eqs.~1! and~2! we
can solve for theE26 using the matricesY( j )

G21S E21

E22
D 52

1

dk (
j 50

`
Y( j )

~dk! j S E11
2

E12
2 D , ~31!

whereY(0) is the unit matrix andY( j ) are determined sequen
tially by

Y( j )52S i ~s21!
]

]z
k2

12
2k1E11

E12

k2
22

2k1E12

E11
2 i ~s21!

]

]z

D Y( j 21)

2
2G2

dk S uE11u2 0

0 uE12u2D(l 51

j

Y( j 2 l )Y( l 21). ~32!

Substituting the aboveE26 into Eq. ~1!, we obtain general-
ized coupled mode equations forE16 up to an arbitrary or-
der, but solving them seems to be increasingly tedious;
therefore do not discuss it here.

Numerical methods for solving to Eqs.~1! and ~2! are
well known @8–10,12,14#. Nonetheless, any nontrivial ana
lytic result is of interest as it can point to trends that a
difficult to unravel numerically. For example, Eq.~28! shows
how the soliton amplitude depends onk2; this subtle depen-
dence would be difficult to extract numerically.

In conclusion starting from the general coupled mo
equations describing a periodic medium with ax (2) nonlin-
earity, we present an improvement to the usual cascad
approximation. Though well studied, the cascading limit
somewhat crude and corresponds to treating the quad
nonlinearity as a Kerr effect. We find that the fields appro
mately satisfy Eqs.~11!, and, at this level, the cascaded no
linearity can thus not be described by a cubic effect only. W
give analytic expressions for the soliton solutions that ag
well with numerical solutions of the full system. Though w
assume a large mismatch, our results appear to be reliabl
O(1) mismatch if the detuning is close to the lower g
edge. Our method can also be generalized to higher ord
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