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Gap solitons in quadratically nonlinear gratings: Beyond the cascading limit
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We consider pulse propagation in quadratically nonlinear gratings. Assuming that the phase mismatch
between the fundamental and the second-harmonic frequefkiisslarge, we present a perturbation method
in sk~1. In the well known cascading limit, terms k! are kept; here we keep termsd& 2, which leads
to another type of coupled mode equations. Numerical calculation of the full equations support our theoretical
results.

PACS numbds): 42.79.Dj, 42.65.Tg, 42.81.Dp

It is well known that the group velocity of light propaga- tons in the presence of a grating were studied by Ceiriil.
tion in a periodic structure can be much smaller than that if14]. Retaining up taO(sk~2), they obtained solutions that
the uniform mediuni1]. However, the dispersion introduced are either stationary or have a specified velocity. However,
by the periodicity causes such pulses to broaden rapidlythey do not obtain simple analytical expressions.
This broadening can be counteracted if the structure is also It thus seems that there is no complete generalization of
nonlinear[2,3], as was demonstrated experimentally in fibercoupled mode theory beyond the cascading limit, even up to
[4] and semiconductor geometrigs], all of which used a (k) ™2, and general analytic results have also not been
Kerr nonlinearity. Since the Kerr effect is a third order effect, found. Here we generalize the cascading limit, deriviag-
and is thus quite weak, large optical powers were requiredjal differential equations for the forward and backward
for example, in the fiber experiments the peak intensity wasvaves. We also give an analytical form for the soliton solu-
around 10 GW/crh and was somewhat lower in the semi- tions with arbitrary velocity and detuning.
conductor geometry. We start from the coupled mode equations that describe
It is also well known that, in an appropriate limit, a qua- periodic systems with a® nonlinearity[7-9):
dratic nonlinearity leads to a nonlinear phase shift that is

somewhat similar to that from the Kerr effd&]. However, . i+_ FKEE 4T * =0 1
the quadratic effect has the advantage over a cubic effect that I(c?t to; Gt K &z HT(E12)7 654 =0, (1)
it can be much stronger. The starting point for studies of

quadratically nonlinear periodic media is a set of four [ d + .
coupled mode equations. This work has shown that these ' Eigﬁ ot Kz Ep + 0KE +1(614)7=0, (2

media support pulselike solutions that can propagate at arbi-

trary velocities up to the speed of light in the medi{ira-9].  where&; ,. are the envelopes of the forward | and back-

In spite of this progress, general analytic solutions are noward (—) propagating modes at the fundamental and
known, except for some limiting cases. In the first of thesesecond-harmoni€2) frequencies. Furthef; is a real param-
the pulses are required to be wide so that a set of coupleeter that is proportional ta?), «; ,= KIZZ(KJ:Q)* are the
nonlinear Schrdinger equations apply7,9]. The second grating strengths at the two frequencies, @fdwvas defined
limit is the integrable case for stationary solitons in whichabove. The group velocity of the fundamental and second-
the phase mismatch between the fundamental and the secohdrmonic waves are normalized to 1 andrespectively. By

harmonic is required to have a particular vali®]. The  suitable choosing the origin, can be made a real positive
third limit is that of a large refractive index mismatch be- number.

tween the fundamental and the second harmonic frequencies; In Egs. (1) and(2) all quantities are assumed dimension-
in this “cascading limit,” the quadratically nonlinear me- less and normalized as

dium acts approximately as if it had a cubic nonlinearity, and
the four coupled mode equations reduce to f&d1,13.

The cascading limit is obtained whefk=k,— 2k;—x,
where k, , are the wave numbers at the fundamental and
second-harmonic frequencies, respectively. It can thus bElere we are interested in large mismatctés>1, so that
considered to be the first term in @k) 1 expansion. An  Eq. (2) is formally solved as an expansion afi("*)
expansion in §k) ! for soliton solutions in uniform media

d

551:~K1~K2~F52:~O(1)- (3

& i &
1+ 9z 1+

was considered by BurydH 3]. Higher order effects for soli- (52+) _ r | £+ X? o ((51+)2) @
&r- sk ok (sk)2 (&-)?)
*Permanent address where the operataX is defined as
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corresponds to the cascading lirfiltl]. Note that according +[EL["EL 2 iT,[E.| EY 0, (1D
to Eq.(3) the above relation gives?~ sk, and the nonlinear where
constantl” should thus be large arn€h.. should be small of 2 2 2
O(sk 1. o _ To=——=, I 1 To=——iy,
The second-order approximations . gives ok (8k)? (8k)?
£, Ki(E12)2 2K,61.E - 3r 2I'%(o—1)
1ﬂ,lgﬁ:_( 1+) n 2 (&17) _ fKicrxeg [a= S r,= . (12)
ok (5k)? (5k)2 (k) (k)
9 1 Equations(11) constitute a homogeneous symplectic form
+ €12 ]2(Ep.)2+i i i(g“)z, (6) [14] i 9E .. /9t= = SHI/SE* . They are similar to the general-
(5k)3 - (8k)2dz" =~ ized coupled mode equations for de@piperstructunegrat-

ings with a Kerr nonlinearity16,17], except that our result
has quintic and nonlinear derivative terms, and does not have
cross phase modulation terms.

We find traveling solutions to Eq11) of the form

where we have eliminated time derivatives&f. by using
Eqg. (1). We refer to an analysis based on EE), as the
improved cascadin@pproximation. Note that in their ana-
lytic work Peschelet al. only retain the first and second
terms of Eqs(6) [8]. Substituting Eqs(6) into Egs.(1), we
obtain a set of equations for tl&g .. only

E.=A"Y1+A(OIF(H]V-O7 (13

where{=z—Vt, A is a positive constanf) is the detuning
parameter, and th& .. are assumed small, @i(sk~1). Note
o that the envelopes of the forward and backward waves differ

d [ &+ 212 5%, in shape if theA .. are different. Note also that since the two
e = 1- S0z | £ 2 “|H, (7)) complex equationél3) contain five unknown real functions,
1= (k) 4 we may require an additional condition, which we here im-
0&1+ pose onA , +A_ .
Substituting Eq(13) into Egs.(11) we have
where
A=(1-V)/(1+V), (14
+ oo
H=f (H4++H-)dz, 8 A(O—A(D=—»VIF(), (15
wherey=(1-V?)~%2 If we choose,
&+ o I? v
—(_ +1; - - 2 _ 4 __ 2__
He=(-1* gt — <1+ ozl ) S5k €12] ALQFTA (D=5 -DIF(Q), (16
T2k we obtain an ODE system féf and =6, —6_
+ Klgligit"' —2(51151‘4:)2, 9
2(8K) dg ol dF 4l L
A T 47

up to the order of interest. Other than the factor (1

—2T'|&£1+]21(8%)?), Eq. (7) is of symplectic form in which ~ with the integrall (F, ¢)

H is an energylike integral. We can make it symplectic by a s )

transformation of the dependent variable I(F,¢)=2y"QF +2yx;F cosp+{y(2y"~1)I'q
=74y =3) QT JF?+{2y°T ;- 29

X (292— 1)k, s}F?cos¢+ y|T',|F2cog 24— B)

2

o 2
gli_E"' 2(5k)2|Ei| Et ' (10)

Applying the Poisson brackdfF,G}p with respect toE.-. , +
we find that{&;.(X),&1-(Y)}p#{E+(X),EX(Y)}p. Trans-
formation (10) is thus not canonicdll5], and changes the
symplectic structure. Using the new variable and neglecting
O( 8k~ ?) quantities, we now obtain the coupled mode equa-
tions where B=arg(k,).

2
31a(47*=37y%) = ¥%(8y"-8y*+1)

><r4r0] F3,
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FIG. 1. Phase flows ifF-¢ space fork;=k,=0=1, I'=3,
V=0, andék=10. Solitary wave solutions are allowed only in the
gap (Q|<1). F<O0 is unphysical as seen in E(L3). Solid dots
indicate fixed points.

Here we search for localized waves, th(@s, ¢#)=0, and
we obtain a relation betweeh and ¢ that reads

Fl¢]=f[¢{1+a,+acose+ascoq24—pB)}, (18)

where

2(yQ + k1C0S¢)
e 19
0
_ 44y =391 T30 y%(8y'-6y—1) I,0

T 3(292-1)2 T} (27%-12 To’
(20

a

_ 24Ty " 4(473_37) kql'3
(2y*-1)Ty  3(2°-1)% T

ar=

Y2(12y*—12y%+1) kI, o1
2y’-1? Do’ 2

oy
(2y*~1)y
Equation(18) gives the phase flows @(sk 1) in F-¢

3= (22
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FIG. 2. Normalized soliton center pow® /I". Solid lines are
the analytic result(28). Circles indicates numerical values from
Egs. (1) and (2). Parameters are set ag,x,,0=1, andV=0.
Region|Q|<1 corresponds to the photonic band gap.

where{, is a constant. Comparing ER3) with the differ-
ential equation forggy: deéo/(2y?Q+2yk,C0S¢g)=—d¢,
we obtaing(¢) in implicit form ¢({) = ¢o({+ N ). Noting
that\ is small, we may replacé on the right-hand side by

dbos
d()=po({+No(0)). (27)

Function ¢(¢) is already given in Eq(25), and we have
thus an explicit expression for the phas&({) up to
O(8k~1). We can also obtain the “soliton amplitude®(¢)
by substituting Eq(27) into Eq.(18).

Applying transformatior(10) and noting Eq(12), we di-
rectly obtain the total poweP=|&,,|%+|&;_|? in an ana-
lytic form:

space; typical flows for stationary solutions are shown in Fig. (2y%—1)6k

1, for k=10 andk,;=k,=0c=1,I'=3, B=0.
Applying the case of a solitary wave with=0 to the
ODE for ¢, we have

d¢
2920+ 2yk,C0SPh

= —\do—d¢, (23

N

2(4y°—3)'; 89y*—8y°+1T, ( 1)
3(2y2-1)T3  (2y2-1)? To ok)’
(24)

In the cascading limit\—0, ¢({)=¢o({) is given by
(12,17

do(H)=—2 arcta{y Z: Zg tanh*l(glzﬁ , (25
e=2{\KkZ— Y’ Q%y({— o)}, (26)

P(Q)=2vf(0)| 1+ b1%+b2%k¢(g)
. |K2|cos(2¢><g>—ﬁ))’ 08
wheref(£)=f[$(£)] and
0,2 BN B D, o
2:%{1+ 2y*(oc—1)}. (30)

Thus we can obtain an analytic expression for the center
value P.. In Fig. 2 we compare the analytic result fBg
with the numerically obtained value from the original system
(1) and(2), for different values ok and{). The numerical
results were obtained assuming the envelopes to be of the
form &; 5. = gl,Zi(g)e"Qt which reduces Eqg1) and(2) to
an ODE system for thg; . ().

Clearly for largesk (=30), the agreement is good every-
where in the photonic band gap. It is surprising that even if
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FIG. 3. Comparison of soliton profiles obtained from numeri-
cally solving Eqgs(1) and(2) (short dashed lingsin the cascading
limit (long dashed linesand in the improved cascading linggolid
lines). The parameters not given in the figure akg x,,0=1, and
V=0.

k=4 [in a sense 00(1)], Eq.(29) is effective particularly
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Our procedure can certainly be generalized to include
higher orders of §k) ~1. Actually using Egs(1) and(2) we
can solve for thef,.. using the matricey))

F1(52+>__ 1 & YW (5&) 31
E-] ki (skyile) 39

whereY(© is the unit matrix and'')) are determined sequen-
tially by

\'9) —— y(i-1)

0
€12

|Ex4[?

0

21?2
ook

i
)21 yU-Dy(=1)_ (32

Substituting the abové,-. into Eq. (1), we obtain general-
ized coupled mode equations 6. up to an arbitrary or-
der, but solving them seems to be increasingly tedious; we
therefore do not discuss it here.

Numerical methods for solving to Eqél) and (2) are
well known [8-10,12,14 Nonetheless, any nontrivial ana-
Iytic result is of interest as it can point to trends that are
difficult to unravel numerically. For example, E@8) shows
how the soliton amplitude depends &g; this subtle depen-
dence would be difficult to extract numerically.

In conclusion starting from the general coupled mode
equations describing a periodic medium with/& nonlin-
earity, we present an improvement to the usual cascading
approximation. Though well studied, the cascading limit is
somewhat crude and corresponds to treating the quadratic
nonlinearity as a Kerr effect. We find that the fields approxi-
mately satisfy Eqs(11), and, at this level, the cascaded non-
linearity can thus not be described by a cubic effect only. We
give analytic expressions for the soliton solutions that agree
well with numerical solutions of the full system. Though we

for small (). For higher powers, the deviations between the,ygqme a large mismatch, our results appear to be reliable for
two results are more obvious, though remain modest. Eve@(l) mismatch if the detuning is close to the lower gap

though P./T" should be small enough to apply our theory,
Fig. 2 shows good agreement everPf/T" is of order unity.

edge. Our method can also be generalized to higher orders.

In Fig. 3 we compare the complete analytical results from

Eq. (28) with numerical results from the original systgi)
and(2), and results in the cascading limit. Equatid@8) are

T. I. thanks Professor Yu. S. Kivshar for fruitful discus-
sions of the cascading approach to the quadratic media. This

clearly superior to the cascading results, and are almost irwork is partially supported by the Ministry of Science and

distinguishable from the exact results.
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